Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.08.372995

ABSTRACT

The Coronaviridae are a family of viruses with large RNA genomes. Seven coronaviruses (CoVs) have been shown to infect humans, including the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease of 2019 (COVID-19). The host response to CoV infection is complex and regulated, in part, by intracellular antiviral signaling pathways triggered in the first cells that are infected. Emerging evidence suggests that CoVs hijack these antiviral responses to reshape the production of interferons and proinflammatory cytokines. Processing bodies (PBs) are membraneless ribonucleoprotein granules that mediate decay or translational suppression of cellular mRNAs; this is particularly relevant for proinflammatory cytokine mRNA which normally reside in PBs and are repressed. Emerging evidence also suggests that PBs or their components play important direct-acting antiviral roles, providing a compelling reason for their frequent disassembly by many viruses. No information is known about how human CoVs impact PBs. Here, we provide data to show that infection with the human CoV, OC43, causes PB disassembly. Moreover, we show that several SARS-CoV-2 gene products also mediate PB loss and virus-induced PB loss correlates with elevated levels of proinflammatory cytokine mRNAs that would normally be repressed in PBs. Finally, we demonstrate that stimulating PB formation prior to OC43 infection restricts viral replication. These data suggest that SARS-CoV-2 and other CoVs disassemble PBs during infection to support viral replication and evade innate immune responses. As an unintended side effect, the disassembly of PBs enhances translation of proinflammatory cytokine mRNAs which normally reside in PBs, thereby reshaping the subsequent immune response.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL